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Abstract-This paper deals with optimal desip of solid. elastic. axisymmetric plates performing free.
transverse vibrations. It is the objective to determine the plate thickness distribution from the condition
that the plate volume is minimized for a given value of the fundamental natural frequency. or for a given
higher order natural frequency that corresponds to a vibration mode with a prescribed number of ·nodal
diameters.

It is found that the Weierstrass necessary condition for optimality is generally not satisfied for a
traditional formulation of this problem. and that the optimal desip is c:hatacteriud by a sliding reaime of
control where the plate thickness exhibits an infinite number of discontinuities. as a system of infinitely
thin, circumferential stiffeners are formed on the optimal axisymmetric plate. This inherent anisotropy of
the optimal design is taken into account in a regularization of the initial optimization problem by
establishing the tensorial character of the plate bending rigidity and using the concentration of thin.
circumferential stileners as a new design variable (control). It is shown that the new formulation of the
problem can be solved numerically, and examples of optimal desips are presented in the paper.

INTRODUCTION
We consider the problem of determining the optimal thickness distribution of a solid, axisym
metric Kirchhoff plate. which for given plate radius, boundary conditions and material, provides
a minimum plate volume under a prescribed value of the fundamental frequency for free,
transverse vibrations. This problem and the equivalent dual problem of maximizing the
frequency for specified volume of the plate, have already been considered in several papers[l
4,6,7].

The axisymmetric problem was first treated in geometrically unconstrained form, i.e.
without specification of minimum and maximum allowable values for the thickness
distribution[1-4]. Reference[1] presents, for three classical sets of boundary conditions,
numerical solutions obtained on the basis of the so-called optimality condition, which, strictly
speaking, is only a stationarity condition. The solution for a simply supported plate in[l] was
later reproduced in[2], and it was subsequently shown mathematically[3] that the solution
satisfies the Legendre necessary condition for optimality, but that it represents a local optimum.

In fact, it is shown in[4] that whereas a number of local optimal solutions exist to the
geometrically unconstrained problem, it does not possess a global optimal solution: in the
absence of some positive lower bouno on the thickness, the latter can be made vanish at
arbitrarily chosen sets of concentric circles (where hinges develop) in the plate, and each
corresponding thickness distribution would constitute a local optimal solution. By increasing
the number of such circles, high and very thin concentric stiffeners arise between them, and the
plate volume can be rendered arbitrarily smalJ for fixed fundamental frequency. Similarly, it is
earlier shown in [5] that concentration of part of a given volume within high and thin stiffeners
can yield any desired increase of the fundamental frequency in the absence of an upper bound
on the thickness.

It is suggested in[6] that a global optimal solution might be ensured by specifying both a
minimum and a maximum allowable value for the plate thickness in connection with the
traditional optimal design formulation. However, even this remedy is not sufficient[7, 8].

tDedicated to the memory of Prof. Anatolii I. Lurie.
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For example, considering such a geometricaUy constrained formulation, Armand [7] found a
conventional iterative computational procedure to be divergent, and that rapidly varying
stiffener-like thickness distributions occurred. Armand reports that "the zigzag profile exhibited
presents a number of peaks and valleys, the number and location of which vary greatly with the
slightest changes in the initial conditions". His conclusion is that "such a behaviour seems to
indicate the existence of more than one solution to the optimization problem in the case of a
plate; the shape of different nominal solutions obtained in solving the governing equations also
suggests that part of the weight tends to concentrate along discrete stiffeners, although
convergence cannot be acheived".

However, in a recent paper[8] on the similar problem of geometrically constrained optimal
design of solid, elastic plates for minimum compliance (maximum stiffness) under fixed plate
volume, the investigators were able to obtain convergent numerical results by using an
incremental procedure of "optimal structural remodeling" [9]. But in this case, solutions
associated with moderate to large ratios between the maximum and minimum allowable values
for the plate thickness are found to depend significantly on the number of grid points used in
the numerical solution procedure; solving a given problem' by using a sequence of finer and finer
grids, increasing numbers of thinner and thinner integral stiffeners are formed. At the same
time, the compliance is decreasing for the sequence of fixed volume designs obtained. It is
found in[8] that although a number of local optimal solutions can be obtained to the traditional
optimal design formulation, it is not possible to determine a possible global optimal solution
within this formulation by using a finite number of grid points. The conclusion drawn in[8] is
that the global optimal design, if it exists, must be a plate which, at least in some sub-regions, is
equipped with an infinite number of infinitely thin stiffeners. This has proven to be correct in a
very recent follow-up[10] of Ref. [8].

The phenomena described above implicitly witness that optimal plate designs are charac
terized by sliding regimes of control. On the other hand, it has earlier been shown in [11] that
the traditional formulation of the general two-dimensional problem of maximizing the fun
damental frequency of a plate does not possess an optimal solution since the Weierstrass
necessary condition breaks down at almost each point of the plate if strong, local thickness
variations are admitted. At the same time, it directly follows from [11] that at those points
where the curvature tensor considerably differs from a circular one, the Legendre condition
seizes to be satisfied, which demonstrates non-optimality of a stationary solution even if
thickness constraints are considered.

The failure of Weierstrass and Legendre tests in traditionally formulated, general 2-D plate
optimization problems explains the appearance of different kinds of degeneracies, and at the
same time manifests the possibility of sliding optimal regimes of control. It will be shown in the
following section that for the simpler, essentially I-D problem of optimizing an axisymmetric
plate, the necessary condition of Weierstrass is also not satisfied in general.

1. NECESSARY CONDITIONS OF OPTIMALITY, TRADITIONAL FORMULATION

Consider small, free harmonic vibrations at the fundamental angular frequency w of a thin,
solid, elastic, axisymmetric circular plate with simply supported boundary. If we denote the
distance from' the plate center by r and assume the fundamental vibration mode w to be
axisymmetric, then w = w(r) will satisfy the following system of differential equations

w'=p

I M v
p =p-,p

, 1- v 1- v2
3M =-S--M+--:rh p

r r
(1.1)
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together with the boundary conditions

p(O) =5(0) =w(R) = M(R) =O.
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(1.2)

Here p denotes the slope of the deflection w, M is the radial bending moment, 5 the radial
shear force, and h is the plate thickness function, which is considered as the design variable
(control). The plate radius is denoted by R, and 1/ is the Poisson ratio of the material. The plate
bending rigidity D is assumed to be scalar (i.e. isotropic) and is divided by the mass density of
the material and set equal to h3

, which corresponds to some specific norm of the deflection
function.

The fundamental angular frequency w is assumed to be prescribed, and the volume of the
plate represented by

v = foR hrdr (103)

is to be minimized under differential constraints (1.1) due to a suitable determination of the
design variable h belonging to a given closed range

o< hmin :s; h :s; hmax

for geometrically constrained optimal design, or open range

(1.4)

(1.5)

for geometrically unconstrained design, respectively.
The formulation outlined above, where h is used as the design variable and the bending

rigidity is assumed to be isotropic, is termed "traditional formulation" for optimal design in the
present paper. This problem is self-adjoint, and the necessary condition of stationarity of V for
arbitrary admissible variation of h is[l, 2]

(1.6)

where c2 is a positive constant which depends on the norm of the deflection w. Condition (1.6)
is valid in all subintervals of 0 :s; r :s; R where h satisfies the inequalities hmin < h < hmax or 0< h,
see (1.4) and (1.5), respectively.

In eqn (1.6), H represents the Hamiltonian of the problem, and the Legendre necessary
condition for minimum volume V is a2H/ah 2 :s; 0, i.e.

(1.7)

It follows directly from this condition that a stationary distribution of the plate thickness will be
non-optimal, if, at a point of vanishing radial bending moment M, the thickness is intermediate
in a geometrically constrained problem, or nonvanishing in a geometrically unconstrained one.

In Ref. [3], the Legendre necessary condition is shown to be satisfied throughout for a
smooth solution first obtained in[l] and later in [2] to a geometrically unconstrained formulation
of the simply supported plate optimization problemt, but this solution is shown to represent a
local minimum for the plate volume[3].

tCorrespondill& solutions pUblished in[II for aclamped plate and for acentrally supported plate with a free edge also satisfy
the Lqendre condition (1.7) throuPout. This is easily checked by means of numerical listings of It, M and Pas fuactions of r
available in(I2) for these solutions (Ref. [121 provides a basis for[l».
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Now, if we admit strong, local variations of h, the increment

IJ. V = V(h + IJ.h) - V(h) =rMr dr

of V in eqn (1.3) can be calculated as in[ll], and is given via (1.8) by

(1.8)

(1.9)

where IJ.h denotes the difference between an admissible and optimal distribution of the design
variable. In eqn (1.8), the coefficient of 11h vanishes due to the stationarity condition (1.6), and it
can then directly be seen from the remaining nonlinear term that the Weierstrass necessary
condition for optimality 111 ~ 0 fails to be satisfied everywhere provided that 11h is large
enough.

2. THE EQUIVALENT ANISOTROPIC PLATE BENDING RIGIDITY TENSOR
The phenomena described above and recent results obtained in [8] make it necessary to

reform'ulate the present problem since the optimal thickness function may well constitute an
infinitely fast sequence of infinitely thin layers of different heights perpendicular to the plate
mid plane. Assuming sequences of such kind to be admissible, we shall now establish the
bending rigidity tensor Da /ky which characterizes our anisotropic plate.

To determine this tensor, consider a small rectangular element u within the plate domain.
This element, which is shown in Fig. 1, represents a physically small material volume; it is small
in comparison with the plate domain, and the stress-strain field within it is homogeneous up to
the order o(mes u), but the element is large in comparison with its microstructure. The element
consists of a finite number of parallel layers of material perpendicular to the plate mid-plane
with rigidity tensors D:/ky and D;/3~'Y associated with the thicknesses h+ and h_ (h_ < h+) over
the domains u+ and u-, respectively. We introduce the concentration J.L

0< =mes(u+)<1
-JL mes(u)- (2.1)

of the domain u+of thickness h+ within the element u.
Now define homogeneous curvatures e:/3 and e~/3 and bending moments M:/3 and M~/3

within the domains u+ and u-, respectively,

M:/3 = D:/3K'Ye:'Y

M~/3 = D~/3~'Ye~'Y' (2.2)

Here, the Greek indices refer to the axes of a Cartesian coordinate system XIX2 embedded in the
plate mid plane, see Fig. 1, and repeated indices imply summation. The average moment tensor
Ma /3 and average deformation tensor ea/J within the element u are given by

Ma /3 = J.LM:/3 +(1- J.L)M~/3

ea /3 = J.Le:/3 + (l-IJo)e~/3' (2.3)

The continuity conditions at the boundaries between the u+ and u_ domains express the
continuity of the normal component of the bending moment and the tangential components of



Optimal design of vibrating axisymmetric plates 935

~ '0'"

~X1

Fig. I. Small, rectangular element C1 of the plate domain. The element consists of thin, parallel layers of
dilferent heights h. and h_ perpendicular to the plate mid plane. The unions of subdomains with layers of

heights h. and h_ are denoted by C1. and C1-, respectively.

the curvatures, i.e.

M;fJnanfJ = M;fJnanfJ

e;fJnatfJ =e;fJnatfJ

e;fJtatjl = e;fJtatfJ'

(2.4)

where the directions of the unit vectors na and ta are perpendicular and parallel to the
boundaries, respectively, see Fig. 1. Equations (2.4h, (2.4)3 and (2.3)2 show that the curvatures
in the (T. and (T_ domains only differ by their normal components, which may be expressed as

e;fJ =eafJ +a.nanfJ

e;fJ = eafJ +a-nanjl, (2.5)

where D. and a_ are scalars to be determined subsequently. Firstly, substitute eqns (2.5) into
eqn (2.3h. Secondly, substitute eqns (2.2) into eqn (2.4)h and eliminate then e;fJ and e;fJ by
means of eqns (2.5). Hence, we obtain

""a. +(1-",,)a- = 0

D;fJKy(eKy +a.nKny)nanfJ - D;jlKy(eKy +D-nKny)nanfJ =O. (2.6)

Solving these two linear equations with respect to a. and a_, we find

(2.7)

where the scalar D is defined by

(2.8)

The curvature tensors e;fJ and e;fJ are consequently expressed by means of the average
curvature tensor eafJ as

e;jl = [l)aKl)fJY + 1;"" (Di.,KY - Dt"Ky)nfn"nanfJ ]eKy

e;fJ =[l)aKl)fJY-~ (Di.,KY - D~'Y)n~"nanll ]eK'Y' (2.9)

where l)all is Kronecker's delta and where D is given by eqn (2.8).
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Equations (2.9) now make it possible to determine the average bending rigidity tensor D"I3K~

characterizing the properties of the entire element,

(2.10)

By eqns (2.3)1. (2.2), (2.5) and (2.7) we have

MUll == fL M :13 +(1- fL)M ull == fLD~llroe;o +(1- fL)D:!3roe;O ==

[fLD :IlK~ +(I - fL)D :!3KY

fL(I- /=) (D- D+ )(D- D+) ]- fJ 0)3r8 - "p,e f'lK'Y - ''lK'Y n{n'ln,ne eK'Y'

which, in view of eqn (2.10) and the arbitrary character of the eK'Y tensor, implies that the D"!3K'Y
tensor is given by

(2.11)

with fJ defined in eqn (2.8).
By means of (2.11) and the well known relationships Majl =D{(I- v)w...p + vOa/lw.rr }

between plate moment components MO)3 and curvatures w.ol' (denoted by eal' until now), it can
easily be checked that the following formulas

D D-D+
1111 == fLR +(1- fL)D+

Dm2 = fLD+ + (1- fL)D- - v
2fLD:;~I-":~)D+ (D_ - D+)2

I-v
Dm2 =Dml =D2112 =D2121 =-2- [fLD+ + (1 - fL )D-]

D D D_D+
Im= 22ll = v fLD- +(1- fL)D+

(2.12)

express the non-vanishing components of the Cartesian DOI'K'Y tensor corresponding to an
orthotropic plate composed of a sequence of thin, parallel layers disposed perpendicular to the
Xl-direction. These layers consist of isotropic material of thicknesses h+ and h_ perpendicular
to the plate mid-plane, and we have D+ 0:: h+3 and D_ 0:: h_3

, respectively, for these layers.
Introducing the short-hand notations D.I' and D.l. for the expressions

such that we have

D - D_D+ _[fL+.!...:l:]-1
.I'-fLD_+(I-fL)D+- D+ D_

D1 = fLD+ +(1- fL>D-

DlIl1 = D.I'
Dm2 =D1 - v2(D1 - D.I') =(1- v2)D1 + v2D.I'

I-v
DI212 = Dl221 = D2112 = D2121 == -2- D.l.

D I122 == Dml = vD.I',

(2.13)

(2.14)
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the Cartesian form of Hooke's law corresponding to (2.10) is
937

(2.15)

Note that eqns (2.15) reduce to the Hooke's law for an isotropic plate with the (scalar) bending
rigidity D+ or D_ if we have IJ. =1 or IJ. =0, respectively.

3. THE REGULARIZED OPTIMIZATION PROBLEM

We shall now reformulate the initial optimization problem by means of the results of Section
2. Assuming the axisymmetric plate to be anisotropic (circularly orthotropic), its free, harmonic
vibrations are governed by the equations

(3.1)

which express Hooke's law and the conditions of equilibrium via the d'Alembert principle. In
eqns (3.1), M, and M. are the radial and circumferential bending moments, MrS the twisting
moment, and Q, and Q. denote the radial and the circumferential shear force, respectively, with
reference to a polar coordinate system r, 8.

Comparing for a given point eqns (3.1)1-3 with the Cartesian equations (2.15), letting the r
and (J directions correspond to the XI and X2 directions, respectively, we identify the fol1owing
relationships for D" D., DrS, II, and II. in eqns (3.1),

D,II. = D.II, = vD;

D,=D;

D. = (1- 11
2)D.1 + 112D;

DrS = (1- II)D.1

v. = II

_ D"
v, - v (1- v2)D.1 + v2D;'

(3.2)

(3.3)

Taking D+ = h+3 and D- = h_3
, which corresponds to some specific norm of the deflection

function W, eqns (2.13) for D; and D.1 become

D;=[~+~rl
D.1 =IJ.h+3 +(l-IJ.)h_3

•
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In eqn (3.1)6' p represents the mass of material per unit area of the plate. Within the norm of
the deflection function, p can be expressed as

(3.4)

Like in[4] we consider the axisymmetric plate to perform free vibrations with a mode w
having a given number n (n ~ 0) of nodal diameters, and we assume w in the form

w = v(r) cos n8. (3.5)

The corresponding angular frequency w is assumed to be given, and it is our objective to
minimize the functional

(3.6)

which represents the total plate volume. Here R. denotes the inner radius of a possible annular
plate (R. = 0 for a full plate).

Until further notice we both consider p., h+ and h_ (with h_ < h+) as design variables, and
assume the following constraints to be prescribed

O:S;J.L:s;1

hmin :s; h_ :s; hmax

hmin:s; h+ :s; hmax.

(3.7)

Due to the form of eqn (3.5) we can now separate variables, i.e. define 8-independent
functions m" me, mr/l and q, by the equations

M, =m,(r) cos n8, Me =me(r) cos n8

Mr/l = mr/l(r) sin n8, Q, = q,(r) cos n8

and then rewrite five of the six equations in (3.1) as

m, = D,(v"+ veG v'-~v))

D (1 , n
2

")me = e;: v -7 v +v,v

mr/l = - Dr/lnGVi - ~ v)
I n m,- me

q,=-m,--,mr/l- r

n2 n
(rq, - nm,e)' +- me - 2- mr/l = - w2[p.h+ +(1- J.L)h-lvr.

r r

The normal Cauchy form of these equations is

(3.8)

(3.9)

(3.10)
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where eqns (3.2) have been used, and the functions m(r) and Q(r) (the 8-independent part of
the effective radial shear force) are defined as

m =m,

n
Q = q, -- m'9'r

The constants ah a2 and a3 in eqns (3.10) are defined by

al = (1- v)(I +v+2n 2
)

a2 = n2(l- v)(3 +v)

a3 =n2(l- v)(2 +n2+vn 2
).

The Hamiltonian of the problem is now given by

where Av, Ap, Am and AQ are Lagrangian multipliers.

(3.11)

(3.12)

(3.13)

4. THE NECESSARY CONDITIONS OF OPTIMALTY

The problem formulated in Section 3 is self-adjoint. Then the Lagrangian multipliers of the
Hamiltonian H in eqn (3.13) are proportional to the basic variables, and we have

AQ =c2rv
Am =c2rp

Ap = - c2rm

Av = - c2rQ,
(4.1)

where c2 is a positive constant. Substituting the functions AQo Am, Ap and Av into eqn (3.13) and
taking the variations of H with respect to h+ and h_, respectively, with eqns (3.3) taken into
account, we obtain the following necessary conditionst for stationarity over h+ and h-,

(4.2)

(4.3)

which are valid for hmin < h+ < hmax and hmin < h_ < hmau respectively. From eqns (4.2) and (4.3)
we are able to draw the important conclusion that the design variables h+ and h_ cannot both be
intermediate at a given point where 0< p. < 1.

We now derive the necessary condition for stationarity of H (and thus V) with respect to

tThese conditions may be checked if we set IL • I or IL .0, which implies a reduction of the problem to havina h. and h_.
respectively, as the only desip variable in a traditional optimal design formulation where isotropic plate bendintl riaidity is
assumed; for IL • I and IL • 0, respectively, eqns (4.2) and (4.3) are easily verified to coincide with the necessary stationarity
condition in(4).
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the design variable ~, and obtain
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(4.4)

for 0 < ~ < 1.
To determine the type of an extremum (max/min), consider the conditions of the Weier

strass type. For the design variable hh the Weierstrass condition requires that

N :sO,

N == H(h+ + 6h+) - H(h+) =

2(6h+)2 1 {2[6 g6h+ 3(6h+)2J
- WC Ii: (h+ +6h+)3 m + Ii:+ Ii:

+Bh+2(h+ +6h+)3(3h+ +6h+)}.

(4.5)

The latter expression contains only nonlinear terms in 6h+, the linear ones having vanished due
to the stationarity condition. The Weierstrass condition for the design variable h_ only differs
from eqn (4.5) by the factor (1-~) instead of ~, and by h_ and 6h_ instead of h+ and 6h+,
respectively.

The factor B in eqn (4.5) is given by

(4.6)

Consider now some special cases of Ineq. (4.5). For n = 0 (i.e. for an axisymmetric vibration
mode), we have Q2 = Q3 = 0, see eqns (3.12), and B = - QIP

2/r2 :s O. For those points where the
radial bending moment m is small, Ineq. (4.5) breaks down, which means that the intermediate
regime of h+ is non-optimal. The same conclusion is true for the case where 3h+ ~ 1 because
the term Bh+2(6h+t will then be prevailing within the brackets {} of (4.5). The same is also true,
of course, for the design variable h_.

The design variables h+ and h_ clearly enter the optimization problem quite in the same way
as the design variable h itself enters the initial problem of Section 1 before reqularization.
According to what has been stated above and the fact that the effectivity of any small material
element increases progressively with the distance by which it is disposed from the plate mid
plane, we set h+ equal to its limiting value

(4.7)

It follows from our discussion above that in problems where small 6h_ is ensured via a
comparatively small ratio hmax/hmin between the specified constraint values, h_ may be inter
mediate at points where the radial bending moment m is large. In problems with comparatively
small hmax/ h min ratio, it is therefore recommended that both h_ and ~ be used as design
variables, which implies that optimality conditions (4.3) and (4.4) must both be included in the
formulation for optimal design.

From now on, we direct our main interest to problems associated with a comparatively large
h max/ h min ratio. Although intermediate values of h_ can also not be excluded in particular
subregions of the plate in such problems in general, we in the following set h_ equal to its
limiting value,

h- = h min . (4.8)

Hence, we remain with the function ~(r) as the only design variable in the sequel. This
design variable is evidently singular (~ appears linearly in the Hamiltonian), and the necessary
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condition of optimality with respect to "" is therefore given by Kelley test

Calculations show that

where all a2 and a3 are given by (3.12), and a. and as are defined as

a4 =n2(1- v)(7 +11 v+4v2+2n2+4vn2)

as = (1- v)(4v +4v2+9n2+11 vn2).

941

(4.9)

(4.10)

(4.11)

Definite conclusions can be made concerning the sign of L in the neighbourhood of a
clamped (v =p =0) boundary or a free (m =Q =0) boundary of a plate. For the first case,
Ineq. (4.9) is not satisfied, which implies that circumferential stiffeners (with 0< "" < 1) will
never appear at a clamped edge; the plate will always be solid with h = h+ (= hmax) or h =h_
(= hmin) in the vicinity of such an edge. For the second case, Ineq. (4.9) is satisfied. However,
this does not, in general, ensure that stiffeners will arise near a free edge. This is because we
may have"" =0, i.e. h =h- ( =hmin), and (4.9) is not valid in subintervals of constrained "".

S. SOLUTION PROCEDURE

Since our problem is nonlinear and quite complex, closed form solutions cannot be
expected, and we therefore proceed to solve it numerically by successive iterations. As it is
slightly simpler to construct a solution procedure for the dual problem of maximizing the
angular frequency w for given total plate volume V, we for convenience consider this
formulation of the optimization problemt in the following, ans in Section 6 present our results
in this context.

To outline the iterative solution procedure, we first develop and discuss a few key formulas,
and then later describe the flow of the calculations. The square of the frequency w to be
maximized, can be expressed as

w
2

= _

(5.1)

if we multiply eqn (3.9)s by v, use eqns (3.9)...-4' (3.2), (3.11)1 and (4.7), and perform two
integrations by parts over the interval R. S r s R, assuming linear, homogeneous boundary
conditions to be given. In eqn (5.1), the numerator identifies half the potential energy, and w2

multiplied by the denominator is half the kinetic energy of the vibrating plate. Equation (5.1)
thus provides a convenient basis for applying the finite element method to solve the plate
vibration problem described by eqn (3.9), i.e. to determine v and its derivatives subject to given
plate design. The distance between R. and R is subdivided by a large number of equally spaced

t A solution to the geometrically constrained problem of minimizing V for fixed III. can always be obtained by solving a
sequence of maximum III fixed V problems. where the designs are successively scaled to meet prescribed III.
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nodal points where the deflection v and the slope p =v' are used as the nodal unknowns, and
where continuity is imposed on these quantities. Each element is taken to have an individual,
constant value of p., and the shape function for the deflection v is chosen as a complete third
order polynomium. The stiffness matrices corresponding to D" and D.J.' respectively, and the
mass matrix corresponding to [p.hma. + (l-p.)hmin] are easily established on the basis of
relevant expressions contained in eqn (5.1).

The optimality condition (4.4), which is valid for 0 < p. < I, can be used to determine the
value of p. for each element in an average sense. In view of eqns (4.7), (4.8), (3.1 I), (3.9)1. (3.2h,
(3.2)5 and (3.3)1. we can write eqn (4.4) as

(h~ax-h~in)h~axh~in ("+v vn2 )2+
( h3 (1 )h 3 )2 v -P---:r- v
p. min+ -p. max , ,

h 3 h3 )(U\ 2 2 U2 U3 2) (h h) 2 2( max - min -::! P - -:3' pV +"4" v - max - min W V =, , ,
hmax - hmin

C2

(5.2)

Denoting the radii of the nodes of a particular element by 'j_\ and 'j, respectively, multiplying
(5.2) by ,c2 and integrating over the interval ';-1::5 ,:S 'j, we obtain

(5.3)

where

(5.4)

We now divide through eqn (5.3) by E., and, in order to be able to obtain convergence, we take
the sth root of the equation and multiply through by p.. Hence, we have

where g is defined by

for f ~ 0, and f is given by

g=t's

(5.5)

(5.6)

(5.7)

(5.8)

By means of eqn (5.5) that governs unconstrained values of p., and the constraints (2.1), we
can now write the following formula for p.,

1
1 if c2/>g ~ 1; , E 'ea

p. = c21>g ~f 0 < c2/>g < 1; , E '.

o If f::5 0; , E 'eb'

However, in order to obtain convergence, it turned out to be necessary to introduce move-limits
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in the iterative procedure. Hence, instead of eqn (5.8), the following formula was actually used
for determining IL,

IMin{(l +k)1L*, I} if c21sg~ Min{(l +k)1L*, I}; r E r~ll
IL = c21sg if Max{(l- k)1L *, O} < c21sg < Min{(1 +k)1L *, I}; r E r~

Max{(l- k)1L *, O} if c21'g:s.; Max{(l- k)1L *, O}; rE r~" (5.9)

Here, the parameter k > 0, and the symbols IL* on the right-hand side denote values of IL
obtained by the previous iteration. Substituting (5.9) into the volume constraint (3.6), we derive
the following expression for the constant C

21s in eqn (5.9),

C
21s

=V - L.u
r
;.. (IL*hmax +(l-IL*)hminJr dr - hmin L. r dr

(hmax - hmin)Lg(r)r dr
•

(5.10)

The formula (5.9) is seen to coincide with (5.8) for large values of the parameter Ie. For k =0,
the formula would remain reproducing the initia11L function. In the examples to be presented
later, values of k from 0.7 to 1.5 together with values of s taken from 0.8 to 1.0 in problems
with n =0, and from 0.6 to 0.7 in problems with n =4, were found to ensure stable (and not too
slow) convergence towards the solutions.

The basic iteration scheme applied in the numerical solution procedure can now be outlined.
It has the following form:

START Take lL(r) arbitrarily, and let the sUbinterval(s) r~ be non-empty.
I Compute D/ and D.i by eqns (3.3).
II Solve the plate vibration problem for given V/ and V.i, i.e. determine w2 and the functions
v, v' =p and v". Compute EJ, ... , E. for each plate element by eqns (5.4).
III Determine C21s by eqn (5.10), and the function g(r) by means of eqns (5.7) and (5.6).
IV Determine lL(r) together with subintervals r;/I, r~ and r;" by eqn (5.9).
V Go to III if lL(r) has not converged in the inner iteration loop III-V.
VI Go to I if lL(r) and hence all other iterates have not converged in the main iteration loop
I-VI.
END

6. NUMERICAL RESULTS

We now present and discuss some numerical solutions to the new optimal design for
mulation developed in Sections 2-4 for axisymmetric plates. Constant maximum and minimum
allowable values, hmax and hmin, respectively, are assumed for the plate thickness, and the
concentration lL(r) of thin, circumferential stiffeners is used as the only design variable. The
problems are considered in the form of maximizing the angular frequency w corresponding to a
transverse vibration mode with n (n ~ 0) nodal diameters for prescribed total plate volume V,
and the solution procedure of Section 5 is applied.

In the following examples, the ratio between the plate thickness constraints is taken to be
comparatively large, namely hmaxlhmin = 5. Poisson's ratio v of the plate material is chosen to be
v =0.25. The frequency fII of each optimal plate will in the sequel be given in proportion to the
corresponding frequency filII of a uniform, solid reference plate that has the same material
volume, plate radius (or radii) and boundary conditions. The thickness of the uniform reference
plate is denoted by hll, and is clearly a measure for the volume prescribed for the optimal plate.

Figure 2 shows results associated with n = 4 for annular, axisymmetric plates, whose inner
radius is one-fifth of the outer radius. For these plates, h.Jhmin =1.6579. The edges of the
optimal plate in Fig. 2(a) are both clampted. while the plate in Fig. 2(b) has clamped inner edge
and simply supported outer edle. In Figs. 2(a and b), the distance between the dashed lines
represents the minimum plate thickness hmin, and the sum of the vertical distances from the
dotted lines to the solid curves illustrates the concentration lL(r) of integral stiffeners (of total
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Fig. 2. Axisymmetric. annular plates optimized for n =4. (a) plate with clamped inner and outer edge,
w/w. = \.668; (b) plate with clamped inner edge and simply supponed outer edge, w/w. = 1.911. For both

plates. R./R = 0.2, hm../hmin = 5, h./hmin = 1.6579 and v = 0.25.

height h max - h min , see Fig. 1 with h+ = h max and h_ = h min). It is found that IL < 1 throughout,
that is, the plates have no solid subregions with thickness hmax • Solid subregions with thickness
hmin (IL = 0) are easily identified in the figures. The solid curve above each plate in Fig. 2 shows
the (I-independent part v(r) of the deftection function.

The frequency of the doubly clamped, optimal plate in Fig. 2(a) is found to be given by
w/wu =1.668, i.e. it is increased by 66.8% relative to the doubly clamped, uniform reference
plate. The optimal n = 4 frequency of the clamped-simply supported plate in Fig. 2(b) is given
by w/wu = 1.911, and is thus 91.1% higher than the corresponding frequency of the clamped
simply supported, uniform reference plate. These results (as well as those to be presented later)
are obtained by using 50 elements in the numerical solution procedure, but it is worth
emphasizing that only absolutely negligible changes are found if any other reasonable number
of elements are used.

Solving precisely the same constrained problems by means of the traditional formulation for
optimal design, we found lack of such invariance of the frequencies and corresponding designs
on the number of elements used in the solution procedure, and the large values stated above for
the optimal frequencies could also not be achieved on the basis of the traditional formulation.
even if we applied a considerable number of elements. These facts clearly indicate that our new
formulation provides a regularization of optimization problems associated with large hma./hmin

ratios.
In Section 4, we were able to deduce that the plates will always be solid with h == h min

(IL = 0) or h = h max (IL == 1) in the vicinity of a damped edge. The designs in Fig. 2 are seen to be
in perfect agreement with this theoretical result, which is further illustrated in Figs. 3(a-e).
Here, annular' plates of the same volume, material, h ma.. hmin and outer radius R are optimized
with respect to the fundamental natural frequency (n = 0, axisymmetric mode). The plates in
Fig. 3 all have free outer edge and clamped inner edge, and their only dissimilarity is their
different inner radii, R•. The radii R. of the clamped inner plate edges in Figs. 3(a-e) are given
by R./R == 0.2, OJ, 0.4, 0.5 and 0.6, respectively. We see that while the designs 3a and b have
IL = 0 and hence h == hmin, the designs 3c, d and e have IL == 1, and thus solid subregions of
thickness h == h max, in the vicinities of the clamped edges. An intermediate value of IL at the
damped edge could also not be obtained for any other value of R. considered in the present
example, which clearly illustrates and confirms the theoretical result derived in Section 4.

Figure 4 shows full circular plates (R. = 0) op~imized with respect to the fundamental
frequency w, assuming the corresponding mode to be axisymmetric, n = O. The edges r == R of
the plates in Fig. 4 are (a) simply supported, (b) clamped and (c) free, the latter plate being
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Fia- 3. Axisymmetric, annular plates optimiud for" = O. Inner plate edges are clamped, outer edges free.
The plates all have the same volume, material (11== 0.25), h...., h•• (h_Ih... == 5) and outcr radius R, but
different inner radii R•. (a) R./R == 0.2, fIJ/(J). == 1.85; (b) R./R = OJ, (J)j(J). = 1.55; (c) R.,R =0.4, (J)'(Uo == 1.30;
(d) R./R == 0.5, (J)'(Uo == 1.16; (e) R./R == 0.6, (J)j(J). == 1.24. (The thickness scale used in the figure is decreased

uniformly from (a) through (e).)
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Fig. 4. Full axisymmetric plates optimized for" =O. (a) simply supported plate, fIJ/~ =1.726; (b) clamped
plate, "J(J). = 1.139; (c) centrally supported plate with a free edae, w(fI). = 2J90. For the plates shown,

It.-/lamin = S, la,,/lamin == 1J91S and" == 0.25.
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supported at its center. Again, hmax/hmin =5, v =0.25, and we have taken h./hmin = 1.5915. The
concentration Jl of integral stiffeners is found to be smaller than unity everywhere.

The fundamental frequency of the simply supported, optimal plate in Fig. 4(a) is found to be
given by w/w. = 1.726. This result witness the superiority of the new optimal design formulation
proposed in this paper by being a good deal higher than the result w/w. = 1.16 for the
geometrically unconstrained, smooth design earlier obtained in[l] and reproduced in[2] for a
simply supported circular plate on the basis of the traditional optimal design formulation.

For the clamped solution in Fig. 4(b), we find the optimal frequency w to be given by
w/w. = 1.139, and the optimal frequency of the centrally supported plate with a free edge in Fig.
4(c) is given by w/w. = 2.390. The frequencies of these geometrically constrained designs are
both lower than those associated with smooth, geometrically unconstrained designst obtained
in[l] on the basis of the traditional formulation for optimal design, namely w/w. = 1.53 for a
clamped plate and w/w. = 6.44 for a centrally supported plate with a free edge. However, the
latter frequencies can easily be exceeded if we solve the new formulation for larger hmax/hmin
ratios, and hence make a more relevant comparison.

7. DISCUSSION

During the last years it has become clear that many problems concerning optimal design or
optimal distribution of material properties of continuous media, possessed no solutions within
some initial formulation [7, 8, 10, 13-15]; in the problems considered in[14, 15], it is required to
distribute the material characteristics of some nonhomogeneous medium within the body such
as to extremize some functional of the solution to the corresponding boundary value problem.

In[13], a problem concerning optimal distribution of specific resistances within a MHD·
power generator channel is investigated as an example, and some physical reasons are given for
the absence of an optimal isotropic control for this problem. It is essential that any solution to
the problem, including the optimal one, is characterized at each point not only by the
amplitudes of the corresponding vectors (current density and potential gradient), but also by the
directions of these vectors. The optimal medium should in essence reflect its dependence upon
these directions, which means that it should be anisotropic. If the initial formulation of the
problem only allows isotropic media for comparison, the optimal control turns out to be
characterized by an infinity of zones occupied by isotropic materials of different properties,
which is nothing but a complete analog of a sliding regime[16]. For the physical problems in
question, the sliding regime of control is just the same as some special kind of anisotropic
medium.

Formally speaking, the absence of the optimal solution to such problems is intimately
connected with the impossibility to satisfy the Weierstrass necessary condition at almost each
point of the region[13]. This condition presents just an instrument which enables us to outline
the necessity of regularization. That is, a necessity of some special closure of the set of
admissible controls.

Consider the set of solutions z(u) to the boundary value problem consisting of the
differential equation

L(u)z = 0

and given boundary conditions, where u E U represents the control function of the set U.
Let {zl} = {z(uJ} be some arbitrary weakly convergent sequence of solutions. Denote by ZO

the weak limit of such a sequence:

The function ZO need not correspond to some control u E U. Determine, following [17],
Q-closure of the set U of functions ii such that for any ZO there exists an element ii which can

tThese designs are obtained for v =OJ. but the influence of v is not significant.
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with the element ZOo Then U U D, where D= {til, turns out to be G-closed, and the problem of
minimization of some weakly continuous functional l(z) of the solution z possesses its solution
within this set. The minimum value 1(z") of the functional is then the limit of some minimizing
sequence l(zj),

l(z") = lim l(zi).
j--

For the problems considered in the present paper, the absence of a global optimal solution
within the traditional formulation is due to the fact that the set of istropic controls, which is
usually considered as being admissible, turns out not to be G·closed in general. When we
construct the minimizing sequence of isotropic controls, we arrive at rapidly varying sequences
of inclusions of different properties, which tend towards some. anisotropic medium. The
properties of such media depend both upon the properties of the compounds and on the
geometry of the inclusions themselves.

For the second order problem

Min l(z);

L: u grad z grad TJ dx = f~ TJf(x) dx, 'tTJ E W2
1
(I)

I(x) E L1(I), u E L...(I), u_ S vrai max u E; u+

where the functional 1(z) is semicontinuous from below and I represents some domain in R",
the G-closure of the set of controls was found in[l8) and[19). The D set has turned out to be
that of symmetric matrices (symmetric tensors of the second rank), whose eigenvalues
AI, .•• ,An disposed in an ascending order are connected by the inequalities

The tensors of such kind describe the equivalent properties of a composite consisting of a
rapidly varying sequence of layers of initial isotropic material components.

For the problem considered in this paper, the G-closure of the set of admissible controls is
also provided by a layered structure. It is a mere consequence of the assumed axisymmetry of
the control, i.e. its dependence on the radial coordinate only. Therefore, the layered compounds
represent here the G-closure of the set of controls.

Passing over to some more than one-dimensional problems of optimization of properties of
elastic bodies, we find that the problem of G-elosure is fairly more complicated. The difficulty is
connected with the necessity of describing the microstructure and equivalent (smear-out)
characteristics of cellular structures which arise due to infinitely many inclusions of one
material into another. Problems of this type have been considered in several papers, of which
mention should be made of[2o-24). In these papers are given the recipes which would make it
possible to calculate the equivalent tensor of elastic moduli corresponding to some given
periodic microstructure of the composite material. For the regularized optimization problem, the
components of that equivalent tensor are to be treated as controls, and these components will
actually depend on the shape and relative sizes of the initial materials within a cell.
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